ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Osamu Mitarai, Akio Sagara, Nobuyoshi Ohyabu, Ryuichi Sakamoto, Akio Komori, Osamu Motojima
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1495-1511
Technical Paper | doi.org/10.13182/FST09-A9253
Articles are hosted by Taylor and Francis Online.
A new control method for the unstable operating point in the force-free helical reactor (FFHR) is proposed for low-temperature and high-density ignited operation. While in the stable ignition regime, the error of the fusion power of e'DT(Pf) = +(Pf0 - Pf) is used to obtain the desired fusion power with proportional-integral-derivative control of the fueling, we have discovered that in the unstable ignition regime, the error of the fusion power with an opposite sign of e'DT(Pf) = -(Pf0 - Pf) can stabilize the unstable operating point. Here, Pf0 is the fusion power set value, and Pf is the measured fusion power. Around the unstable operating point, excess fusion power (Pf0 < Pf) supplies fueling, increases the density, and then decreases the temperature. Less fusion power (Pf0 > Pf) in the subignited regime reduces the fueling, decreases the density, and then increases the temperature. While the operating point rotates to the clockwise direction in the stable ignition boundary, it rotates to the counterclockwise direction in the unstable ignition regime. Using this control algorithm, it is demonstrated that the operating point can reach the steady-state condition from an initial very low-temperature and low-density regime. The fusion power can also be shut down from the steady-state condition without any problems. Furthermore, characteristics of the stable and unstable ignition regimes are compared for the same fusion power, and control robustness to changes with various parameters has been studied.