ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. K. Heung, H. T. Sessions, X. Xiao, H. L. Mentzer
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1471-1475
Technical Paper | doi.org/10.13182/FST09-29
Articles are hosted by Taylor and Francis Online.
The first generation of a hydrogen isotope separation process called the thermal cycling absorption process (TCAP) has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental 12-m column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the Eighth International Conference on Tritium Science and Technology and are published in the proceedings, Fusion Sci. Technol., Vol. 54, No. 2, p. 399 (2008). We have since completed the start-up and demonstrated the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams, each with better than 99.7% purity.