ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
A. N. Perevezentsev, A. C. Bell, B. M. Andreev, M. B. Rozenkevich, Yu. S. Pak, A. V. Ovcharov
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1455-1461
Technical Paper | doi.org/10.13182/FST56-1455
Articles are hosted by Taylor and Francis Online.
This paper evaluates detritiation of air contaminated with tritium in the form of water vapor using a scrubber column filled with structured packing. This technique is based on isotopic exchange between tritiated water vapor and liquid water. In combination with a catalytic oxidizer operated at room or slightly elevated temperature, the scrubber column can also decontaminate air contaminated with tritiated molecular hydrogen. Mass transfer rates measured for structured packings made of stainless steel and copper alloy confirmed high efficiency of the detritiation process. Study of the effect of various operation parameters on column efficiency allows optimization of column operation. It was demonstrated that this technique is competitive with the drying technique with respect to the decontamination factor (DF) provided and the amount of tritiated water to be generated. Benefits offered by the wet scrubber technology are based on the nature of the isotopic exchange process. No need for regeneration allows reduction in the number of units and as such decreases the capital cost of the facility for continuous operation. The DF can be controlled by changing the flow rate of feedwater.