ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. N. Perevezentsev, A. C. Bell, B. M. Andreev, M. B. Rozenkevich, Yu. S. Pak, A. V. Ovcharov
Fusion Science and Technology | Volume 56 | Number 4 | November 2009 | Pages 1455-1461
Technical Paper | doi.org/10.13182/FST56-1455
Articles are hosted by Taylor and Francis Online.
This paper evaluates detritiation of air contaminated with tritium in the form of water vapor using a scrubber column filled with structured packing. This technique is based on isotopic exchange between tritiated water vapor and liquid water. In combination with a catalytic oxidizer operated at room or slightly elevated temperature, the scrubber column can also decontaminate air contaminated with tritiated molecular hydrogen. Mass transfer rates measured for structured packings made of stainless steel and copper alloy confirmed high efficiency of the detritiation process. Study of the effect of various operation parameters on column efficiency allows optimization of column operation. It was demonstrated that this technique is competitive with the drying technique with respect to the decontamination factor (DF) provided and the amount of tritiated water to be generated. Benefits offered by the wet scrubber technology are based on the nature of the isotopic exchange process. No need for regeneration allows reduction in the number of units and as such decreases the capital cost of the facility for continuous operation. The DF can be controlled by changing the flow rate of feedwater.