ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. T. Hoang
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1417-1431
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9185
Articles are hosted by Taylor and Francis Online.
From both simulation and theoretical perspectives, the current density profile of magnetized plasma is expected to play an important role in turbulence. Optimization of both the safety factor q and the magnetic shear s can reduce turbulence, and therefore heat transport.Experimentally, external sources of heating and/or noninductive current drive have been used in Tore Supra to modify the current profile. In these experiments, electron heat diffusivity and turbulence level were found to be reduced when increasing s or reversing the q profile (i.e., negative s). As a consequence, confinement was improved.Core electron heat transport has been investigated. A critical threshold temperature gradient, above which turbulence strongly increases, has been experimentally determined. A parametric dependence study of this threshold pointed out the role of the ratio s/q, as expected by turbulence theory and simulations, thus explaining improved confinement regimes.Finally, thanks to the unique Tore Supra experimental conditions, the role of the q profile on turbulent particle transport was investigated. We have demonstrated that the electron density profile peaking is strongly governed by the q profile in low collisionality plasmas with dominant trapped electron modes.