ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Pégourié, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1334-1352
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9181
Articles are hosted by Taylor and Francis Online.
Fuel retention in carbon plasma-facing components (PFCs) is such a major concern for next-step operation that it could prevent the use of this material in the D-T phase of ITER. Because of its complete set of actively cooled PFCs, Tore Supra offers a unique opportunity to study this phenomenon in conditions where the plasma exposure time is much longer than the thermal equilibration time of the PFCs. In addition to the main characteristics of permanent retention measured during long-discharge operation, this paper discusses the different mechanisms possibly at work in the continuous increase of the in-vessel inventory and describes the morphology and physical properties of the deposits found at several locations in the vacuum chamber. The main results are (1) that D retention mainly depends on the lower hybrid power coupled to the plasma and, to a lesser extent, on the edge temperature and fueling method, (2) that permanent D retention is mainly due to codeposition, and (3) that the hydrogenated carbon deposits present at the surface of the different PFCs are strongly disorganized graphite carbons when they are exposed to high heat fluxes, whose formation occurs through a heterogeneous growth involving both codeposition of nanoparticles and basic structural unit vapor condensates.