ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Pégourié, A. Géraud, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1318-1333
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9180
Articles are hosted by Taylor and Francis Online.
Particle control is an essential requirement for long-pulse operation. Besides steady-state particle exhaust, the complementary key element is particle fueling. Three fueling methods are currently used in Tore Supra: conventional gas puffing, supersonic molecular beam injection, and pellet injection. In addition to a technical description of the corresponding systems, this paper presents an overview of different studies characterizing these methods in terms of fueling efficiency and ability to fuel long discharges or to obtain high-density plasmas with no confinement degradation. An analysis of the interaction between the plasma and the pellet or supersonic beam is also given, including the physics of the homogenization of the deposited particles in the background plasma (importance of the edge cooling and of the [nabla]B-induced displacement) or the transport-induced modification for deep-matter penetration (triggering of an improved confinement phase or, conversely, of a sawtooth crash when a pellet crosses the q = 1 surface).