ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. Darbos, R. Magne, A. Arnold, H. O. Prinz, M. Thumm, F. Bouquey, J. P. Hogge, R. Lambert, M. Lennholm, C. Liévin, E. Traisnel
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1205-1218
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9174
Articles are hosted by Taylor and Francis Online.
An electron cyclotron resonance heating (ECRH) system capable of delivering 2.4 MW cw has been designed to be built at Commissariat à l'Energie Atomique, Cadarache, for the Tore Supra (TS) experiment, to provide plasma heating and current drive by electron cyclotron resonance interaction.The planned system was composed of a generator using six gyrotrons 500 kW for 5 s or 400 kW cw working at 118 GHz. Six transmission lines made of corrugated waveguide, 63.5-mm diameter, carry the HE11 mode to one antenna composed of six fixed mirrors and three independently movable mirrors for the adjustment of the injection angles of the rf beams.The antenna was built and installed in TS, and all transmission line components ordered and installed between the gyrotron locations and the antenna. In the same way, the required six oil tanks, the six cryomagnets, and the six modulating anode devices were designed and manufactured.In parallel, after demonstration in the factory of proper operation of the prototype gyrotron, the manufacture of a first so-called series gyrotron was made. But this gyrotron experienced hard limitations (overheating inducing prohibited outgassing, parasitic oscillations) during the long-pulse tests in Cadarache, and the achieved performance was 300 kW for 110 s. A new study was then carried out in collaboration with Thales Electron Devices, the EURATOM-CEA Association, and the EURATOM-Confédération Suisse Association to understand and overcome the limitations, which led to the construction of a new modified gyrotron.During the tests in factory of this new gyrotron, the output beam showed two peaks, a pattern never predicted by simulations. The gyrotron was nevertheless transferred to Cadarache for long-pulse testing, but an arc on the windows definitely stopped the tests.To understand the cause of the observed two peaks, various low-level tests were then performed on a model of the mode converter with different shapes for the launcher, but without real improvement. Besides measurements, the use of a new software, Surf3D, based on integral equations and providing a complete three-dimensional modeling, showed that the problem mainly comes from the third mirror, whose curvature is too high and consequently not well taken into account by the calculation.These technological problems have seriously delayed the development of the gyrotrons; as a consequence, only two tubes (intermediate developments) are presently available on TS to inject 700 kW in 5-s pulses.In spite of this relatively low power, the localized absorption property of electron cyclotron waves has been used on TS in a wide variety of experiments, such as stabilization and control of the sawtooth period, perturbative transport studies by ECRH modulations, and ECRH-assisted plasma start-up.