ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Lipa, J. Schlosser, F. Escourbiac
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1124-1149
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9171
Articles are hosted by Taylor and Francis Online.
To fulfill the Tore Supra mission (the realization and study of high-performance long-duration discharges), the development of reliable actively cooled plasma-facing components is mandatory. This was foreseen from the beginning of Tore Supra, and since 1985, the Tore Supra team has been involved in the development and fabrication of actively cooled plasma-facing components. The initial configuration of the machine in 1988 included a 12 m2 inner first wall made of stainless steel tubes armoured with brazed graphite, outer water-cooled stainless steel panels, and modular pump limiters. This configuration, using the inner wall as limiter, allowed 20- to 30-s-duration plasma discharges to be performed. Further progress required the development of a more reliable brazing technique and a limiter support system mechanically independent of the vacuum vessel. A new configuration (Composants Internes et Limiteur project), using a completely new concept of high-heat-flux components (including notably a braze-free bond between carbon-fiber composite tiles and copper heat sink), was therefore launched in 1997. With this new configuration, discharges up to 6 min with 1 GJ of injected and removed power were achieved in 2003.