ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
S. Tanaka, K. Chiba, Y. Oya
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 224-227
Technical Paper | Tritium Science and Technology - Decontamination and Waste | doi.org/10.13182/FST05-A917
Articles are hosted by Taylor and Francis Online.
D2O adsorption and desorption behavior on Fe2O3 have been studied with a Fourier transform infrared absorption spectrometer (FT-IR). The absorption peaks of the O-D stretching vibration band were observed in the region of 2500-2750 cm-1, which were considered to be from the surface OD on the sample. Desorption behavior by irradiation of energetic particles was not uniform but depended on FTIR wave numbers. Hence, desorption of D2O was found to be heterogeneous on the surface.