ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
B. Saoutic, M. Chatelier, C. De Michelis
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1079-1091
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9169
Articles are hosted by Taylor and Francis Online.
The superconducting tokamak Tore Supra was built in the 1980s, when the Joint European Torus (JET) started operation, with the aim of addressing technological and scientific questions relevant to long-pulse operation, in complement to JET objectives. The past 20 years of operation have confirmed that it was essential to integrate within a single device the features of high-performance long pulses in order to progress on the technological side with the level of effort needed for integration and interface management.Besides the 20 years of successful operation of the superconducting magnet, successive developments of the actively cooled plasma-facing components have allowed us to increase progressively the level of performance of Tore Supra. Since 2001, Tore Supra has been operated with an actively cooled toroidal pump limiter, complemented by actively cooled antenna protections and wall protection [Composants Internes et Limiteur (CIEL) project], capable of removing up to 20 to 25 MW of power. The high-performance long-pulse capability of Tore Supra culminated in 2003 with record discharge durations of 6 min driven by lower hybrid current drive (LHCD).Although Tore Supra has a circular cross section, which departs from the favorite divertor edge configuration, it has been possible to address original physics questions that are of importance for current and future scientific choices of ITER and beyond, e.g., plasma discharges driven by LHCD or ion cyclotron resonance heating (ICRH) (no neutral beams), carbon wall environment at constant temperature, ergodic edge, pellet/supersonic gas injection, electron cyclotron resonance heating-assisted mode control or plasma breakdown, etc.The large heat exhaust margin available with the CIEL components has made possible the current installation of a new LHCD power system with 16 upgraded 700-kW klystrons and an actively cooled passive/active lower hybrid antenna, which opens the prospects for larger-density operation and larger ICRH coupling and therefore higher-performance plasmas (higher bootstrap fraction) over discharges of the same or longer duration.This paper briefly sketches the research reported in this special issue of Fusion Science and Technology dedicated to the Tore Supra tokamak. It briefly sketches its history, describes its mission, and outlines its physics and technology results.