ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
D. Demange et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 182-187
Technical Paper | Tritium Science and Technology - Decontamination and Waste | doi.org/10.13182/FST05-A908
Articles are hosted by Taylor and Francis Online.
This work deals with an indirect and non destructive measurement of tritium in solids. Instead of measuring tritium, we propose to measure the production rate of the decay product: 3He.The amount of tritium enclosed inside a waste drum can be determined with an adapted 3He ingrowth method that takes into account the leak rate of the drum. The model leads to different ways to quantify tritium in the drum. It is confirmed using reference drums that measuring the 3He leak by confining the drum during its equilibrium state gives the same result as sampling the drum atmosphere at the beginning of the storage. For each method, the appropriate apparatus, experimental procedures and calculation of tritium activity from mass spectrometric 3He measurements are detailed. Performances of these techniques are studied and discussed.In addition, we describe a novel and fully automated apparatus based on the confinement method that makes it possible to achieve a close tritium inventory of all the waste drums stored or produced at CEA Valduc.