ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. L. Snead, K. J. Leonard, G. E. Jellison, Jr., Mohamed Sawan, Tom Lehecka
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1069-1077
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-26
Articles are hosted by Taylor and Francis Online.
Dielectric mirrors have been considered for both magnetic and inertial confinement systems. Such mirrors are comprised of multiple thin bi-layers of high and low refractive index materials deposited onto a substrate. Three dielectric mirror types were fabricated to reflect at the KrF laser wavelength of 248 nm and these mirrors irradiated at ∼ 175 °C in the dose range of 0.001 to 0.1 x 1025 n/m2 (E>0.1 MeV.) Mirror reflectivity was measured on as-irradiated and on 300 and 400 °C vacuum annealed mirrors. The best performing mirror overall, the alumina/silica multilayer mirror, did not appear to have degraded reflectivity in the as-irradiated or the as-irradiated and annealed conditions. For the highest dose, annealed condition degradation was observed in the hafnia silica mirror. Additionally, laser induced damage threshold was measured on the best performing mirror (the alumina/silica mirror) with a resulting threshold of > 1 J/cm2, For this mirror, the damage threshold was not discernibly degraded by neutron irradiation. These findings are somewhat in contradiction to earlier work, which suggested poor performance of dielectric mirrors at an order of magnitude lower neutron dose. In conclusion, the current findings, while preliminary, suggest the possibility for using dielectric mirrors to much higher dose levels.