ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Donghua Xu, Brian D. Wirth
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1064-1068
Fusion Materials | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9052
Articles are hosted by Taylor and Francis Online.
Helium effects are among the most critical subjects in fusion materials research. A major task in the study of He effects is to understand how He interacts with irradiation-induced and/or inherent defects and how the interactions govern the subsequent microstructural evolution. Thermal desorption spectrometry (TDS) provides an appropriate platform for both experimentally probing the kinetics and energetics of He-defect interactions and computationally validating the parameterization of rate theory models. In this paper we present preliminary results on the spatially dependent rate theory modeling of TDS of He-implanted single crystalline iron under the same conditions as explored in our recent experiments. Included in the present model are previously reported migration energies for self-interstitial-atom (SIA), di-SIA and interstitial He from ab initio calculations, and binding energies of HexVy, Vm and In clusters from thermodynamic calculations or ab initio based extrapolations. With a small amount of parameter optimization, several major features observed in the experimental TDS spectra have been reasonably reproduced by the model, while further and more complete validation through both experiments and computation remains to be carried out.