ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
V. Widak, P. Norajitra, J. Reiser
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1028-1032
Divertors and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9046
Articles are hosted by Taylor and Francis Online.
Within the EU power plant conceptual study (PPCS), a modular He-cooled divertor concept (Ref. 1) has been investigated at the Forschungszentrum Karlsruhe to achieve a heat flux of at least 10 MW/m2. The divertor conceptual design is based on the use of a tile made of tungsten, a structural element made of tungsten alloy, and a steel cartridge. The cooling of the divertor module is realized by an impingement of helium jets (10 MPa, 600 °C) flowing through an array of small jet holes located at the top of the cartridge, able to remove the high heat flux incident on the top surface of the tiles.In this paper a modular design of a helium cooled divertor is introduced. A method of design examination regarding the cooling capability and the component stresses are pointed out. The method is based on the use of a combined system of modern computer tools. For the 3D design construction, the CAD program CATIA V5 was utilized. The simulation calculations were performed in two steps: thermo-hydraulic CFD calculations using the ANSYS CFX tool and thermo-mechanical FEM calculations with the ANSYS code. The CFD computations were done taking into account the design geometry with an appropriate meshing and the boundary conditions, i.e. the defined heat flux, the helium pressure and temperature at the inlet. Among other things, the heat-transfer-coefficients received from the CFD runs were then used for the following FEM analyses. The simulation results and a potential of design improvement will be discussed.