ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V. Widak, P. Norajitra, J. Reiser
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 1028-1032
Divertors and High Heat Flux Components | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9046
Articles are hosted by Taylor and Francis Online.
Within the EU power plant conceptual study (PPCS), a modular He-cooled divertor concept (Ref. 1) has been investigated at the Forschungszentrum Karlsruhe to achieve a heat flux of at least 10 MW/m2. The divertor conceptual design is based on the use of a tile made of tungsten, a structural element made of tungsten alloy, and a steel cartridge. The cooling of the divertor module is realized by an impingement of helium jets (10 MPa, 600 °C) flowing through an array of small jet holes located at the top of the cartridge, able to remove the high heat flux incident on the top surface of the tiles.In this paper a modular design of a helium cooled divertor is introduced. A method of design examination regarding the cooling capability and the component stresses are pointed out. The method is based on the use of a combined system of modern computer tools. For the 3D design construction, the CAD program CATIA V5 was utilized. The simulation calculations were performed in two steps: thermo-hydraulic CFD calculations using the ANSYS CFX tool and thermo-mechanical FEM calculations with the ANSYS code. The CFD computations were done taking into account the design geometry with an appropriate meshing and the boundary conditions, i.e. the defined heat flux, the helium pressure and temperature at the inlet. Among other things, the heat-transfer-coefficients received from the CFD runs were then used for the following FEM analyses. The simulation results and a potential of design improvement will be discussed.