ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. Sugiyama, Y. Asakura, T. Uda, K. Kotoh
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 163-166
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A904
Articles are hosted by Taylor and Francis Online.
At the National Institute for Fusion Science experimental studies on hydrogen isotope separation by a cryogenic Pressure Swing Adsorption (PSA) process have been carried out in order to apply it to the system of vacuum pumping-gas treatment for the D-D burning experiments of the Large Helical Device. Breakthrough behavior of D2 in a H2-D2 mixture flowing through a synthetic zeolite 5A-type packed-bed column at 77.4 K is examined by using a cryogenic PSA apparatus. The test column used is 40 mm inner diameter. It is filled with spherical adsorbent particles of 2 mm at an amount of 700 g on a dry basis. The hydrogen mixture including D2 at a concentration of 1 % is used in this experiment. The breakthrough curves obtained by the experiments are accurately simulated by theoretical curves calculated for the system exhibiting the Henry type adsorption. Overall effective mass transfer coefficients are obtained from the comparison of experimental curves with analytical ones. The coefficients increase monotonously with superficial velocity. The sequential operations of PSA, such as adsorption, desorption and pressurization is carried out for several times. It is confirmed that breakthrough curves are reproducible after several repetitions of operation.