ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Sugiyama, Y. Asakura, T. Uda, K. Kotoh
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 163-166
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A904
Articles are hosted by Taylor and Francis Online.
At the National Institute for Fusion Science experimental studies on hydrogen isotope separation by a cryogenic Pressure Swing Adsorption (PSA) process have been carried out in order to apply it to the system of vacuum pumping-gas treatment for the D-D burning experiments of the Large Helical Device. Breakthrough behavior of D2 in a H2-D2 mixture flowing through a synthetic zeolite 5A-type packed-bed column at 77.4 K is examined by using a cryogenic PSA apparatus. The test column used is 40 mm inner diameter. It is filled with spherical adsorbent particles of 2 mm at an amount of 700 g on a dry basis. The hydrogen mixture including D2 at a concentration of 1 % is used in this experiment. The breakthrough curves obtained by the experiments are accurately simulated by theoretical curves calculated for the system exhibiting the Henry type adsorption. Overall effective mass transfer coefficients are obtained from the comparison of experimental curves with analytical ones. The coefficients increase monotonously with superficial velocity. The sequential operations of PSA, such as adsorption, desorption and pressurization is carried out for several times. It is confirmed that breakthrough curves are reproducible after several repetitions of operation.