ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
V. Cocilovo et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 989-993
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9039
Articles are hosted by Taylor and Francis Online.
A new facility for fusion , the Fusion Advanced Studies Torus ( FAST ), has been proposed to prepare ITER scenarios and to investigate non linear dynamics of energetic particles, relevant for the understanding of burning plasmas behavior, using fast ions accelerated by heating and current drive systems. This new facility is considered an important tool also for the successful development of the demonstration/prototype reactor (DEMO), because the DEMO scenarios can take valuable advantage by a preparatory activity on devices smaller than ITER with sufficient flexibility and capable plasma conditions, before to testing them on ITER itself.In the regimes proposed for FAST the magnetic Toroidal Field (TF) ripple could lead to significant losses of high-energy particles, as also demonstrated in JET and JT60U experiments, so a careful analysis is necessary to achieve a low value of the TF ripple as far as compatible with the general load assembly design issues.Two different approaches to reduce TF ripple had been considered: Ferromagnetic Insets and Active Coils. For both solutions, different geometric parameters were investigated and the relative benefits and drawbacks evaluated.The analysis was carried out by 2D and 3D electromagnetic F.E.M. codes, dealing with different design solutions, chosen between those compatible with the relevant geometric dimensions of the plasma (i.e. the vacuum vessel), the access to the plasma and the divertor needs (i.e. the vacuum vessel ports dimensions) and other design constrains.A magnet consisting of 18 coils, each made of 14 copper plates suitably worked out in order to realize 3 turns in radial direction has been proposed. To limit within acceptable value the TF magnet ripple, the ferromagnetic insets solution has been chosen for FAST.The ripple on the plasma separatrix (near the equatorial port), has been so reduced from 3% to 0.3% .Due to the good results obtained also with Active Coils a study for applying the Active Coils concept also in ITER design was made, confirming even in this case the possibility to reduce considerably the TF ripple.