ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Alan S. Binus, Yijun Lin, Stephen J. Wukitch, Andrew Pfeiffer, David Gwinn
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 977-982
Plasma Engineering | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9037
Articles are hosted by Taylor and Francis Online.
A real-time ion cyclotron range of frequencies (ICRF) antenna matching system has been successfully implemented on Alcator C-Mod. A triple-stub tuning system working at 80 MHz is used, where one stub acts as a pre-matching stub and the other two stubs incorporate fast ferrite tuners (FFT) to realize fast tuning. It uses a computer based digital controller for feedback control (200 uS per iteration) using real-time antenna loading measurements as inputs and the coil currents to the FFT magnets as outputs. The system has obtained and maintained matching for a large range of plasma parameters, including L-mode, H-mode, and plasmas with edge localized modes, and up to 1.8 MW net RF power into H-mode plasma. The RF power loss in the system has been found to be insignificant when the voltage in the system is below 30 kV. Achieving this level of performance involved several engineering challenges. The ferrite tuners available had to be used in their received configuration and their implementation would accommodate the existing characteristics of the tuners. A suitable range of load matching, operational speed, component protection and thermal management were factors that had to be balanced against tuner characteristics, system complexity and cost containment. The FFTs are permanently operational on Alcator C-Mod.