ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Hashizume, K. Yuki, N. Seto, A. Sagara
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 892-896
Test Blanket Modules | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9023
Articles are hosted by Taylor and Francis Online.
By changing the composition ratio in Flibe to decrease its melting temperature, it becomes possible to design the TBM under the temperature design limits for ferritic steel. The accompanied demerit due to the increase in viscosity and degradation in heat transfer performance is overcome by introducing sphere-packed pipe as the first wall. The empirical correlation for heat transfer performance is derived for several sizes and materials of the spheres. Through the present analysis, there exist design windows for the Flibe TBM. This possibility is strongly linked to the demo reactor development since the structural material development for higher temperature condition can lead to the usage of Flibe with higher melting temperature and better heat transfer performance, which could be available under higher heat flux in the demo reactor.