ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
H. Hashizume, K. Yuki, N. Seto, A. Sagara
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 892-896
Test Blanket Modules | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9023
Articles are hosted by Taylor and Francis Online.
By changing the composition ratio in Flibe to decrease its melting temperature, it becomes possible to design the TBM under the temperature design limits for ferritic steel. The accompanied demerit due to the increase in viscosity and degradation in heat transfer performance is overcome by introducing sphere-packed pipe as the first wall. The empirical correlation for heat transfer performance is derived for several sizes and materials of the spheres. Through the present analysis, there exist design windows for the Flibe TBM. This possibility is strongly linked to the demo reactor development since the structural material development for higher temperature condition can lead to the usage of Flibe with higher melting temperature and better heat transfer performance, which could be available under higher heat flux in the demo reactor.