ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Myunghwa Shim, Hongsuk Chung, Hiroshi Yoshida, Haksoo Jin, Min Ho Chang, Sei-Hun Yun, Seungyon Cho
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 856-860
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-13
Articles are hosted by Taylor and Francis Online.
We are developing an innovative ZrCo hydride bed design, which is characterized by a large cylindrical filter, very thin cylindrical metal hydride powder packed layer, and large relative heating area per unit weight of ZrCo powder for ITER fuel cycle application. To validate this design concept, two ZrCo bed models each loaded with 127 g of ZrCo were tested by using H2 gas. In the first model, ZrCo powder was packed into the 3 mm gap between the filter cylinder and the vessel, and mold heater elements were attached to the outer surface of the vessel. The second model consisted of a layer of ZrCo powder packing (7 mm thickness), coiled cable heaters attached independently to the outer surface of the primary vessel and the inner surface of the filter cylinder. This paper presents detailed design features of the ZrCo bed models, and test results of the beds performances, i.e., temperature transient of the ZrCo packed bed during fast heating, hydriding rate up to 90-99% recovery, and 90-98% delivery fraction.