ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Takumi Hayashi et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 836-840
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9014
Articles are hosted by Taylor and Francis Online.
In order to investigate the function of water molecule for tritium transport behavior on the water-metal boundary, a series of experiments of tritium permeation into humid atmosphere was performed through pure iron piping with different surfaces of oxide etc., which contained about 1 kPa of pure tritium gas at 423 K. Chemical forms of tritium permeated into water were monitored continuously under purging outer jacket by <1000ppm of water vapor in Ar. Observation of metal surfaces was also carried out by Secondary Electron Microscope (SEM) and X-Ray Diffraction (XRD) analysis. The results were compared with those permeated into pressurized liquid water at 423 K.The actual tritium permeation rate into Ar with <1000 ppm of water vapor was not clearly changed that into liquid water. In the vapor atmosphere, a magnetite layer did not grow on the surface clearly, and tritium permeation rate and chemical species (∼100% of HTO) through pure iron piping with mechanically polished surface were not changed drastically comparing with data with a magnetite surface. On the other hand, hydrogen gas (HT) fraction of tritium permeated into the outer jacket increased drastically in case of a gold plating surface.