ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yuji Inagaki et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 821-825
Tritium Breeding | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9011
Articles are hosted by Taylor and Francis Online.
Deuterium ion implantation experiments into Li2TiO3 and TiO2 were performed with various ion fluences to elucidate the role of lithium on deuterium retention behavior in Li2TiO3. The experimental results showed that there were four deuterium trapping states in TiO2; two of them were interacted near the surface and the others were deuterium trapped by E'-center and bound to oxygen with forming TiO-D bond in bulk. For Li2TiO3, there were five trapping states; four of them were the same as those in TiO2 and the other was that bound to oxygen with forming LiO-D bond. The implanted deuterium was preferentially trapped by E'-center with forming hydroxide. LiOD phase was formed as increasing ion fluence. The retention of deuterium trapped by E'-center for Li2TiO3 was less than that for TiO2, indicating that the migration of lithium via irradiation defects during implantation refrains the deuterium retention in Li2TiO3.