ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Volker Pasler, Dmitry Klimenko
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 804-808
Safety and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9008
Articles are hosted by Taylor and Francis Online.
The inductive energy of about 40GJ stored permanently inside the toroidal field (TF) coils of ITER provides a considerable potential of hazard in case of an accident. While for most accidents it could be proved that the damage is limited to the coils themselves, possible high current arcs at the busbars of the TF coils may propagate to and penetrate the cryostat wall. Model arc experiments were setup to understand the propagation and damage potential of such arcs to provide a database for the development and validation of a numerical model as the next step. This work reviews the basic arc propagation and burning modes found so far and introduces new experimental setups and findings.