ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kenji Okuno, Sachiko Suzuki, Hirotada Ishikawa, Takumi Hayashi, Toshihiko Yamanishi, Yasuhisa Oya
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 799-803
Safety and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9007
Articles are hosted by Taylor and Francis Online.
Temperature dependence of oxide layer formation on hydrogen isotope retention in stainless steel type 316 was studied by TDS and XPS. The shape of TDS spectrum was clearly changed by the oxide formation temperature. The chemical states of iron, chromium and oxygen were also evaluated by XPS. The surface oxide layer was composed of iron and oxygen and the contribution of chromium was quite low. The ratio of oxide layer on stainless steel increased as increasing the annealing temperature. The deuterium retention trapped by the oxide layer, which corresponded to the desorption temperature of 600-800 K, was governed by the ratio of oxide layer, especially iron hydroxide. All of the iron was not oxidized and the saturation ratio of iron oxide to pure iron existed in the stainless steel. It was concluded that the saturation of deuterium retention trapped by the oxide layer was controlled by the amount of iron oxide in the oxide layer.