ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Zucchetti, L. Di Pace, L. El-Guebaly, B. N. Kolbasov, V. Massaut, R. Pampin, P. Wilson
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 781-788
Safety and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9004
Articles are hosted by Taylor and Francis Online.
In order to maximize the environmental benefits of fusion power generation, it is important to clearly define the parameters governing the back-end of the materials cycle. A fusion-specific approach is necessary and needs to be developed. Recycling of materials and clearance (i.e. declassification to non-radioactive material) are the two recommended options for reducing the amount of fusion waste, while the disposal as low-level waste could be an alternative route for specific materials and components. Both recycling and clearance criteria have been recently revised by national and international institutions. These revisions and their consequences for fusion material management are examined in this paper.It is also important to define the various processes and routes to avoid generating active waste from fusion as much as possible. Two ways are explored within the fusion community: first, the development of materials leading to low activation levels, avoiding the generation of long lived radionuclides through a strict control of the impurity content in materials; second, the development of suitable and reliable processes allowing either clearance of as much material as possible (potentially after adequate treatment) or recycling most of the remaining materials within the nuclear industry.