ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yasushi Yamamoto, Atsunori Ishidou, Kazuyuki Noborio, Satoshi Konishi
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 761-765
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9001
Articles are hosted by Taylor and Francis Online.
We have investigated the neutron generation characteristics of discharge-type fusion neutron source by experiments and computer simulations for several years. The cylindrical inertial electro-static confinement device used for these studies has been considered to be a point source where neutrons emitted isotropic. The aspect ratio (length divided by diameter) of the device is 1∼2. For neutron applications, a beam shape where neutrons are emitted in a specific direction may be more convenient.In this paper we describe recent results of neutronic calculations for making a beam-type neutron source by increasing aspect ratio of the device and by locating reflecting material around the device. It is found that the increase of aspect ratio of 2∼5 does not strongly affect the neutron flux distribution, but that neutron fluxes in the axial direction becomes 2∼3 times larger than those without reflectors and more than 1 order stronger than the radial direction by adding reflector.