ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Sawan, A. Ibrahim, T. Bohm, P. Wilson
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 756-760
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A9000
Articles are hosted by Taylor and Francis Online.
The High Average Power Laser (HAPL) power plant has targets that are directly driven by forty KrF laser beams. Three-dimensional neutronics calculations were performed directly in the exact CAD model of the HAPL final optics system to assess the impact of the biological shielding configuration on the nuclear environment at the GIMM and dielectric focusing and turning mirrors. In the initial configuration, the biological shield fully encloses the GIMM sand associated dielectric mirrors. We assessed another configuration where the shield is moved farther from the target to fully enclose the dielectric mirrors leaving the GIMM in the open space between the chamber and the biological shield. A variation of this configuration utilizes 40 neutron traps attached to the inner surface of the biological shield behind the GIMMs. It is concluded that the shielding configuration with all optics including the GIMM being fully enclosed in the biological shield is the preferred option since it results in the lowest nuclear environment at the dielectric mirrors, provides better GIMM support, reduces the volume to be maintained under vacuum, and requires the least amount of concrete shield.