ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kenji Kotoh, Kazuhiko Kudo
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 148-151
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A900
Articles are hosted by Taylor and Francis Online.
Equilibrium isotherms for the adsorption of H2, HD, HT, D2, DT and T2 on synthetic zeolite type 5A or 13X at 77.4 K are estimated by using a theoretical formula, where the isotopic difference in adsorption depends on the zero-point energy difference between hydrogen isotopes. The formula agrees with the experimental isotherms for H2 and D2 on the zeolites. Adsorption of H2-D2 and H2-HD-D2 mixtures on the same adsorbents is experimentally examined. The experiments are performed using a volumetric apparatus and a quadra-pole-type mass spectrograph. The experimental adsorption behavior of H2, D2 and HD shows agreement of separation factors with results calculated according to the ideal adsorbed solution theory describing multi-component behavior, where the equilibrium isotherms estimated for H2, HD and D2 are used. Based on the theoretical adsorption model, the multi-component behavior of HT, DT and T2 is predicted here.