ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Zengyu Xu, Chuanjie Pan, Wenhao Wei, Xiaoqiong Chen, Yanxu Zhang, Wenzhong Li
Fusion Science and Technology | Volume 36 | Number 1 | July 1999 | Pages 47-51
Technical Paper | doi.org/10.13182/FST99-A90
Articles are hosted by Taylor and Francis Online.
It is important that magnetohydrodynamic (MHD) flow velocity distribution in the cross section of a duct be related to materials compatibility, heat transfer, and MHD pressure drop. The first experimental results are given of the velocity distribution across the rectangular duct on the center plane and of the two-dimensional (2-D) MHD pressure drop effect due to the 2-D velocity distribution. The results show that both the boundary and core velocity distributions on the center plane of the duct increase with an increase of the Hartmann number M. However, the approach theory expected the core velocity distribution to decrease with an increase of M. The 2-D effect factor for the MHD pressure drop due to the 2-D velocity distribution was also carried out. This explains why the numerical results of the MHD pressure drop gradient are lower than in the experiments. Theoretical analysis of the 2-D and three-dimensional effects on the velocity distribution and MHD pressure drop is also included.