ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. Pampin, M. J. Loughlin, M. J. Walsh
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 751-755
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-751
Articles are hosted by Taylor and Francis Online.
Systematic analysis of the radiation fields throughout the ITER core LIDAR diagnostic system were performed to support the design optimisation and assessment process, aiming at achieving the required performance in terms of reliability, occupational safety and interface with neighboring systems. Neutron, photon, nuclear heat and material activation responses were estimated for a variety of configurations, and improved using a combination of analytical "rules of thumb" and numerical computations with the ATTILATM and FISPACT codes. The neutron flux at the backplate of the port plug was significantly reduced (to ∼2x107 n/cm2-s) by fine-tuning the reference geometry of the laser labyrinth, and guidelines were provided for quick estimation of the effect of future design changes. The current design has adequate lifetime of essential optical components, in particular absorption in collection windows below ∼1%, and reduced dose to workers during maintenance according to the ALARA principle.