ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Y. Herreras, S. Domingo, J. M. Perlado, A. Ibarra
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 741-745
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8997
Articles are hosted by Taylor and Francis Online.
Future fusion reactors will require remote handling systems due to their neutronic activation and subsequent gamma irradiation inside the chamber. The testing and validation of these systems will be carried out in facilities specifically designed for this purpose. The aim of this paper is to describe a methodology to optimize both a bremsstrahlung generated gamma dose and its spatial distribution inside a given testing volume. Electron main beam spectrum and intensity, angular distribution of the split beams and target material and its thickness are the main considered parameters. Dose distribution at any given point of the testing volume is then obtained in order to perform a statistical analysis which establishes a criterion to choose the most suitable parameter configuration for the different irradiation needs.