ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
T. D. Bohm, M. E. Sawan, P. Wilson
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 731-735
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8995
Articles are hosted by Taylor and Francis Online.
Gaps exist between the first wall/shield (FWS) modules of ITER to allow for fitting by remote handling equipment. Simplified three-dimensional models were used at the top and mid-plane locations to analyze gap streaming. Heating, helium production, and fast neutron fluence were examined at the front of the vacuum vessel and the magnet for both straight and stepped gaps. In addition, total nuclear heating values in the inboard magnet and central solenoid were examined for straight and stepped vertical gaps and for combined horizontal and vertical straight gaps. The results show significant radiation streaming effects that are more pronounced for fast neutron fluence and helium production. Furthermore, it was found that stepping the gap significantly reduces the local peaking, but has little effect on the relative average values of radiation effects. The results also show increases up to 75% in total magnet heating at the inboard mid-plane location for a straight 2 cm combined vertical and horizontal gap.