ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mahmoud Z. Youssef, Russell Feder, Kelly Thompson, Ian Davis, Gregory Failla
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 718-725
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8993
Articles are hosted by Taylor and Francis Online.
The new feature of the ATTILA 3-D code to calculate dose rates in a given geometry was benchmarked using the dose rate experiments performed at the FNG 14.1 MeV source facility located at ENEA, Frascati, Italy. Two experimental campaigns were performed. Post irradiation measurements were undertaken using Geiger-Müller, TLD, and tissue-equivalent scintillators. Other measurements were also performed during irradiation. ATTILA results were compared to the experimental data and to the results of the MCNP Monte Carlo code published earlier. The calculations were performed through three consecutive steps using the same ATTILA code along with its built-in activation library, FORNAX. The ANSI/ANS6.1.1-77 and ICRP74 Ka flux-to--dose conversion factors were used. Good agreement with the experimental data and the MCNP results was obtained for times >7 d after irradiation in the 1st campaign but large underestimation was found at shorter time steps. Both dose rates and integrated gamma fluxes are largely underestimated (∼20-40%) in the 2nd campaign.