ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Hara et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 144-147
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A899
Articles are hosted by Taylor and Francis Online.
A new kind of materials that can be applied to a gas chromatographic hydrogen isotope separation system was developed to reduce the amount of Pd-Pt alloy required for making the column and to improve the separation efficiency. Pd and Pt were deposited on -Al2O3 powder by using a barrel sputtering system. Prepared sample powder was characterized from surface morphology, element distributions on the surface, composition and crystallinity. The characterization showed that a uniform layer of Pd-Pt alloy with expected composition was formed on Al2O3 particles. The crystallinity, however, was poor, but improved after annealing at 1073 K for 2 hours. The hydrogen absorbing behavior was also improved by the annealing. A separation column was prepared from the annealed powder and was subjected to experiments on hydrogen isotope separation. The column of annealed powder gave considerably good separation efficiency around room temperature, in spite that only 0.35 g of Pd-Pt was used for the column. The amount of Pd-Pt alloy used here should be compared to previous results, where 1.5 g of Pd-Pt powder was required for high separation efficiency. The new material was quite effective to reduce the amount of Pd-Pt alloy without compromising the separation efficiency and can give further improvement.