ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Neil Mitchell, Denis Bessette, Hirobumi Fujieda, Yuri Gribov, Cees Jong, Fabrice Simon
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 676-684
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8987
Articles are hosted by Taylor and Francis Online.
The ITER magnet system, particularly the Poloidal Field Coils (PFC) and Central Solenoid Coils (CSC), was originally designed to drive, confine and stabilise a set of plasmas about a baseline of a reference 15MA 400s inductive burn, with capability for inductive short burn at currents up to 17MA and 10MA non-inductive plasmas depending on the plasma parameters that can be achieved.Recent assessments of experimental data and improved plasma modelling have identified some constraints in the 2001 design that may limit the range of plasmas that can be generated in ITER. The constraints are a mixture of coil superconducting performance, structural and electrical limits, and concern both the accuracy of the formation of the plasma configuration (including the position of the separatrix lines in the divertor) and the stabilisation of the plasma position.