ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. Serio, Cryogenics Team
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 672-675
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8986
Articles are hosted by Taylor and Francis Online.
ITER cryogenic system is in its final design phase to be constructed at Cadarache, South of France. It shall use the most advanced cryogenic technologies developed for accelerators projects adapted and optimized to fulfil the requirements and constraints of a large fusion installation.A refrigeration capacity equivalent to 65 kW at 4.5 K is planned for the cooling of superconducting magnets, their HTS current leads and small users. It also includes the cooldown of the cryogenic pumps and their re-cooling after regeneration. A 1300 kW nitrogen plant provides cooling power for the thermal shields. The key design requirement is the capability to cope with large pulsed heat loads deposited in the magnets due to magnetic field variations and neutron production from the fusion reaction.The cryogenic distribution system is based on the design of a complex and compact transfer line system and several cryogenic distribution and feed boxes.After recalling the basic features we shall present the status of the design and the main magnet interfaces and key design requirements.