ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. Jong, J. Knaster, C. Sborchia
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 666-671
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8985
Articles are hosted by Taylor and Francis Online.
The Toroidal Field (TF) system of ITER consists of 18 coils in which the winding pack (WP) is formed by 7 stacked double pancakes (DP). The conductors in the TF coil are operated in steady state mode with a current of 68 kA providing a flux of 5.4 T at the plasma axis. The conductors are wrapped with turn insulation and embedded in grooves manufactured in so called radial plates. The grooves are closed with covers, wrapped with glass and polyimide tapes and vacuum impregnated. This layout of the TF WP prevents the accumulation of stresses in the turn insulation, making unlikely the occurrence of a turn-to-turn short circuit. The insulation of the WP will undergo during ITER design lifetime fast neutron fluencies up to 3.2x1021n/m2, which is equivalent to 10 MGy. Standard epoxies degrade if submitted to such doses, developing mechanical properties that would not withstand the estimated operation in-plane shear stress in the range of 45 MPa. The use of a radiation-hard thermoset for glass-fiber composites (cyanate ester) is considered and the on-going extensive qualification work will be presented. The technical solution of how to isolate critical High Voltage (HV) areas like the joint connections or voltage taps is also discussed.