ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. H. Balshaw, Y. Krivchenkov, G. Phillips, S. Davis, R. Pampin-Garcia
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 661-665
ITER | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8984
Articles are hosted by Taylor and Francis Online.
Many of the ITER diagnostic systems will be mounted in the equatorial and upper ports of the torus, supported plugs support the diagnostics and provide functions of baking, cooling, and neutron shielding. They must operate reliably in the demanding ultra-high vacuum, high radiation environment of the ITER tokamak for many years.Recent work on the mechanical design of the equatorial port plugs is reported, including a proposal for a new conceptual design, which uses the lid of the port plug as a structural member. The design of a complex component like this is an iterative process considering the interaction of the features of the port plug structure, neutron shielding components and diagnostic components with the electromagnetic forces induced in the structure by plasma disruptions.These electromagnetic forces are recognised to dominate the requirements for the strength of the structure. Much work has been carried out on this topic by other people, but generally this has been based on models which make assumptions about the boundary conditions. An ANSYS electromagnetic model of a half-sector of ITER has now been developed by UKAEA, to study the induced forces in the equatorial port plugs.