ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
R. W. Moir, H. F. Shaw, A. Caro, Larry Kaufman, J. F. Latkowski, J. Powers, P. E. A. Turchi
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 632-640
Laser Fusion-Fission Hybrid | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST18-8166
Articles are hosted by Taylor and Francis Online.
Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of 238U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF4, whose melting point is 490°C. The use of 232Th as a fuel is also being studied. (232Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be ∼550°C at the inlet (60°C above the solidus temperature) and ∼650°C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount (∼1mol%) of UF3. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu3+ in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, are fractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus 233U production rate is ∼0.6 atoms per 14.1 MeV neutron.