ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
S. P. Obenschain, J. D. Sethian, A. J. Schmitt
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 594-603
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-594
Articles are hosted by Taylor and Francis Online.
The Fusion Test Facility (FTF) is a high repetition rate ignition facility that would bridge the gap between single shot facilities (such as NIF and LMJ) and a fully functioning laser fusion power plant. It would allow development of science and technologies so that follow-on power plants could have predictable performance. The FTF would need to have enough fusion power, about 100 MW, to rigorously test materials and components for the power plants. Because inertial fusion provides a "point" source for neutrons, it can provide very high fluxes for test objects placed close to the target, while the reaction chamber walls remain at conservatively large distances. Simulations indicate that direct-drive designs can achieve 100 MW fusion power with laser energies well below 1 MJ with a 5 Hz driver. High-resolution 2-D simulations of high-velocity direct-drive implosions utilizing a Krypton-Fluoride (KrF) laser give gains of >60° at 500 kJ, and shock-ignited targets may allow higher gains at even lower driver energy. Utilizing designs that require relatively small driver energy is the most straightforward path to reducing cost and development time for a practical laser fusion energy power plant. A program to develop an FTF would build upon the science and technologies developed in the existing National Ignition Campaign and the High Average Power Laser (HAPL) program, as well as the magnetic fusion technology program.