ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. P. Obenschain, J. D. Sethian, A. J. Schmitt
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 594-603
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-594
Articles are hosted by Taylor and Francis Online.
The Fusion Test Facility (FTF) is a high repetition rate ignition facility that would bridge the gap between single shot facilities (such as NIF and LMJ) and a fully functioning laser fusion power plant. It would allow development of science and technologies so that follow-on power plants could have predictable performance. The FTF would need to have enough fusion power, about 100 MW, to rigorously test materials and components for the power plants. Because inertial fusion provides a "point" source for neutrons, it can provide very high fluxes for test objects placed close to the target, while the reaction chamber walls remain at conservatively large distances. Simulations indicate that direct-drive designs can achieve 100 MW fusion power with laser energies well below 1 MJ with a 5 Hz driver. High-resolution 2-D simulations of high-velocity direct-drive implosions utilizing a Krypton-Fluoride (KrF) laser give gains of >60° at 500 kJ, and shock-ignited targets may allow higher gains at even lower driver energy. Utilizing designs that require relatively small driver energy is the most straightforward path to reducing cost and development time for a practical laser fusion energy power plant. A program to develop an FTF would build upon the science and technologies developed in the existing National Ignition Campaign and the High Average Power Laser (HAPL) program, as well as the magnetic fusion technology program.