ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Sugiyama et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 132-135
Technical Paper | Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation | doi.org/10.13182/FST05-A896
Articles are hosted by Taylor and Francis Online.
At the National Institute for Fusion Science experimental studies on hydrogen isotope separation by a Combined Electrolysis Catalytic Exchange (CECE) process have been carried out in order to apply it to the system of water detritiation for D-D burning experiments of the Large Helical Device. As an improvement of the CECE process, we have developed a reduced-pressure method as a means of enhancing the separation factor. The feasibility of this method is examined through application to a CECE process using a prototype separation column. Hydrogen-deuterium isotope separation experiments are performed in the two cases where column pressures are 12 and 101 kPa, and the separation factors for hydrogen and deuterium are obtained as 6.8 and 5.6, respectively. It is confirmed that the present method is applicable and useful to the CECE process. The values of Height Equivalent to a Theoretical Plate (HETP) are estimated by analyses with the equilibrium stage model. The HETP values are 15 cm at 12 kPa and 13 cm at 101 kPa. The increase of superficial velocity with decreasing pressure may spoil the efficiency of the mass transfer.