ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. H. Sorebo, G. L. Kulcinski, R. F. Radel, J. F. Santarius
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 540-544
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST56-540
Articles are hosted by Taylor and Francis Online.
Special Nuclear Materials (SNM) detection efforts have largely been divided into two main groups: active and passive. Passive techniques are highly desirable in that a radiation source need not be employed in order to detect fissile materials which broadcast a clear radiative signature. However, disadvantages can be seen in HEU (Highly Enriched Uranium) detection, for example, where the system's efficacy is limited by its ability to detect a weak self-radiative signature from U. Active interrogation provides a catalyst for amplifying HEU's presence vis-a-vis fission event inducement, which in turn yields a starker signature which can be discerned through an understanding of fissile materials and neutron transport in various media. Ongoing work in the Fusion Technology Institute's Inertial Electrostatic Confinement (IEC) Experiment has focused on using the pulsed D-D neutrons from an IEC to interrogate the presence of HEU in an enclosed space. The paper begins with a brief description of the neutron-based detection schemes of Delayed Neutron Analysis (DNA) and Differential Die-Away (DDA). Experimental delayed neutron counts of ninety above the background at an interrogating neutron flux of 5.5x104 n/cm2-s are seen to confirm MCNP modeling results. MCNP is also utilized to probe future concepts in neutron-based active interrogating SNM detection systems using DDA analysis.