ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
George H. Miley et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 533-539
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8958
Articles are hosted by Taylor and Francis Online.
Earlier studies have described Inertial Electrostatic Confinement (IEC) fusion power concepts using either D-He3 or p-B11 fuels to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires a large multi-GW thruster forcing a long term development program. As a first step, we examine here a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites followed by a small 50-100 kW IEC fusion thruster module for next generation large deep space spacecraft. The initial electrically-powered unit is a novel multi-jet plasma thruster based on spherical IEC technology using electrical input power from a solar panel. This type of unit is discussed and its advantages for next step electrically driven units are identified.