ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Brian J. Egle, Gerald L. Kulcinski
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 518-522
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8955
Articles are hosted by Taylor and Francis Online.
Design, modeling and simulation work has been done to develop a system of producing radioisotopes by using D-3He fusion and the Inertial Electrostatic Confinement (IEC) fusion concept. This work provides a set of requirements for moving from the previous proof-of-concept experiments to medically relevant dosages of the radioisotopes used in Position Emission Tomography (PET). This study focuses primarily on the production of 11C from the 14N(p, ) 11C reaction, and could be extended to additional PET isotopes. A target was designed for gaseous parent materials; it consists of vacuum tight panels placed inside the vacuum vessel of an IEC device. The side facing the isotropic source of 14.7 MeV fusion protons is a thin metal foil (~0.5 mm of Ti). The foil acts to separate the vacuum environment of the IEC device from the pressured gaseous environment of the target. Parametric analysis of the foil thickness and 14N gas pressure was performed to optimize the efficiency of fusion protons in producing 11C. The MCNPX 2.5.0 simulations predicted that an optimized system could produce 390 nCi of 11C with the present laboratory scale IEC device at the University of Wisconsin, which has a D-3He fusion rate of 2 x 107 protons per sec (p/s).