ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. L. Kulcinski et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 493-500
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-21
Articles are hosted by Taylor and Francis Online.
For the past 15 years, the Inertial Electrostatic Confinement (IEC) fusion group at the University of Wisconsin-Madison has been conducting experiments to demonstrate that there can be many near term applications of fusion research long before the production of electricity in commercial fusion power plants. This research has concentrated on three fuel cycles: DD, D3He, and 3He3He. Some of the major accomplishments are listed below:a. The production of > 108 DD neutrons per second on a steady state basisb. The production of pulsed DD neutrons to over 1010 per second in 10Hz, 100 s bursts.c. The production of 14.7 MeV protons at > 108 per second (steady state) from the D3He reaction.d. Demonstrated the detection of the explosive C-4 with steady state DD neutrons.e. Demonstrated the detection of Highly Enriched U (HEU) with pulsed DD neutron fluxes.f. Production of the positron emission tomography (PET) isotopes, 94mTc and 13Nusing D3He protons.g. Production of the first measured 3He3He fusion reactions in an IEC device.h. Development of unique diagnostic techniques to measure the rate, spectrum, and location of fusion reactions in IEC devices.i. Use of an IEC device to study the behavior of materials at high temperature during charged particle bombardment.The accomplishments above were carried out in 3 devices HOMER, 3HeCTRE, and HELIOS that have operated up to 180 kV and meter currents of 65 mA. New applications are currently being explored and expanded roles for the IEC device will be described.