ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
G. L. Kulcinski et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 493-500
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-21
Articles are hosted by Taylor and Francis Online.
For the past 15 years, the Inertial Electrostatic Confinement (IEC) fusion group at the University of Wisconsin-Madison has been conducting experiments to demonstrate that there can be many near term applications of fusion research long before the production of electricity in commercial fusion power plants. This research has concentrated on three fuel cycles: DD, D3He, and 3He3He. Some of the major accomplishments are listed below:a. The production of > 108 DD neutrons per second on a steady state basisb. The production of pulsed DD neutrons to over 1010 per second in 10Hz, 100 s bursts.c. The production of 14.7 MeV protons at > 108 per second (steady state) from the D3He reaction.d. Demonstrated the detection of the explosive C-4 with steady state DD neutrons.e. Demonstrated the detection of Highly Enriched U (HEU) with pulsed DD neutron fluxes.f. Production of the positron emission tomography (PET) isotopes, 94mTc and 13Nusing D3He protons.g. Production of the first measured 3He3He fusion reactions in an IEC device.h. Development of unique diagnostic techniques to measure the rate, spectrum, and location of fusion reactions in IEC devices.i. Use of an IEC device to study the behavior of materials at high temperature during charged particle bombardment.The accomplishments above were carried out in 3 devices HOMER, 3HeCTRE, and HELIOS that have operated up to 180 kV and meter currents of 65 mA. New applications are currently being explored and expanded roles for the IEC device will be described.