ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Youji Someya, Tetsuo Matsumoto, Ryoji Hiwatari, Yoshiyuki Asaoka, Kunihiko Okano, Takuya Goto, Yuichi Ogawa
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 478-482
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8949
Articles are hosted by Taylor and Francis Online.
A Fast ignition Advanced Laser fusion reactor CONcept with a Dry first-wall and a high repetition laser (FALCON-D) has been proposed to investigate the potential of the fast ignitionin the reactor concepts. For the blanket system, two types of blanket concepts, i.e.asolid and a liquid metal breeder types using the reduced activation ferritic steel (F82H) were proposed.In this study, two types of blankets were designed, where the thickness of the blankets was minimized while keeping the net TBR larger than 1.07. One of the blanket concepts for FALCON-D is based on the solid breeder (Li2TiO3) with beryllium (Be) neutron multiplier and water cooling. The second blanket concept is based on liquid metal breeder (Li17Pb83) with water cooling. The maintenance method for FALCON-D is applicable to both blanket types. The net electric power of the solid breeder blanket is 110 MW larger than that of the liquid metal breeder blanket. This is mainly caused by the differences in the neutron energy multiplication. In the case of the liquid metal breeder blanket with water cooling, the net TBR 1.09 is achieved without Be as the neutron multiplier. Such design without Be can remove a risk of accident due to the chemical reaction between beryllium and water. From the economical point of view, the solid breeder blanket with water cooling, which generates a larger electric power, is desirable. On the other hand, if the combination of beryllium and water cooling was not acceptable from a viewpoint of safety, the blanket system with the liquid metal would be another possible option.