ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Youji Someya, Tetsuo Matsumoto, Ryoji Hiwatari, Yoshiyuki Asaoka, Kunihiko Okano, Takuya Goto, Yuichi Ogawa
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 478-482
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8949
Articles are hosted by Taylor and Francis Online.
A Fast ignition Advanced Laser fusion reactor CONcept with a Dry first-wall and a high repetition laser (FALCON-D) has been proposed to investigate the potential of the fast ignitionin the reactor concepts. For the blanket system, two types of blanket concepts, i.e.asolid and a liquid metal breeder types using the reduced activation ferritic steel (F82H) were proposed.In this study, two types of blankets were designed, where the thickness of the blankets was minimized while keeping the net TBR larger than 1.07. One of the blanket concepts for FALCON-D is based on the solid breeder (Li2TiO3) with beryllium (Be) neutron multiplier and water cooling. The second blanket concept is based on liquid metal breeder (Li17Pb83) with water cooling. The maintenance method for FALCON-D is applicable to both blanket types. The net electric power of the solid breeder blanket is 110 MW larger than that of the liquid metal breeder blanket. This is mainly caused by the differences in the neutron energy multiplication. In the case of the liquid metal breeder blanket with water cooling, the net TBR 1.09 is achieved without Be as the neutron multiplier. Such design without Be can remove a risk of accident due to the chemical reaction between beryllium and water. From the economical point of view, the solid breeder blanket with water cooling, which generates a larger electric power, is desirable. On the other hand, if the combination of beryllium and water cooling was not acceptable from a viewpoint of safety, the blanket system with the liquid metal would be another possible option.