ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. Aristova, C. A. Gentile
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 475-477
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8948
Articles are hosted by Taylor and Francis Online.
An important technical and economic consideration in designing the prospective direct drive inertial fusion energy (IFE) reactor is the determination of a suitable mechanism for tritium breeding from neutrons produced in the initial reaction. A comprehensive review has been undertaken to determine the optimal breeding material, examining several candidate compounds. These include ceramic breeding pebbles as well as liquid 83Pb-17Li (Pb-Li) and (LiF)2BeF2 (FLiBe). In this study, the compounds are evaluated based on chemical and physical properties, structural requirements, feasibility, hazards, and costs of application. Preliminary results seem to indicate that, of the liquid breeding materials, FLiBe may be the more practical option, due to its mechanical feasibility and the relative projected efficiency of blanket design. Likewise, lithium metatitanate (Li2TiO3) appears to be a viable ceramic material. However, much remains to be investigated, particularly the properties of breeder and structural materials in the specific conditions of a reactor. Further work in this area will require theoretical modeling as well as practical trials, currently planned in other progenitor reactor designs. This paper will present the results of the analysis of these candidate breeder materials.