ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. S. Tillack, J. E. Pulsifer
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 446-451
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-32
Articles are hosted by Taylor and Francis Online.
The grazing incidence metal mirror is a promising option for the final optic in a laser-driven inertial fusion energy power plant. It has been pursued as an alternative to multi-layer dielectric mirrors based on expectations of higher radiation damage resistance. Aluminum offers high reflectivity over a broad range of wavelengths extending deep into the ultraviolet part of the spectrum, and thus offers special advantages for an excimer laser driver. In this article, we describe the fundamental phenomena of laser-induced metal mirror damage and lifetime, strategies for mirror fabrication, our experimental facility and techniques, and the results of fabrication and test campaigns over the past several years.