ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
B. Lu, S. I. Abdel-Khalik, D. L. Sadowski, K. G. Schoonover, F. Hegeler, P. M. Burns, J. D. Sethian
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 441-445
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8941
Articles are hosted by Taylor and Francis Online.
Active cooling of the transmission foil separating the vacuum diodes from the laser cell in the Electra KrF Laser is necessary to prevent its failure under repetitively pulsed (5Hz) operating conditions. This paper investigates the effectiveness of forced convection cooling using near-wall jets as a means of protecting the foil. Two different near-wall jet configurations are examined. The first one uses a planar, 1mm-thick, high-speed jet flowing parallel to the laser gas stream along the entire width of the hibachi foil structure. The second one uses small, 0.8mm-diameter circular jets positioned in staggered locations, 12.7mm apart, along the ~30cm height of each of the 24 hibachi rib spans with flow perpendicular to the laser gas stream. Bench-top experiments simulating a single 3.4cm×30cm foil span between two neighboring ribs have been conducted. For both jet configurations, experiments have been performed at different jet velocities and heat inputs. The goal of these experiments is to demonstrate quantitatively that near-wall jets can effectively cool the Electra hibachi foil under prototypical pulsed operating conditions without adverse impact on beam quality or laser efficiency. Preliminary tests with a full-size hibachi on Electra have shown this to be true.