ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Aaron Aoyama, James Blanchard, John Sethian, Nasr Ghoniem, Shahram Sharafat
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 435-440
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8940
Articles are hosted by Taylor and Francis Online.
In support of the High Average Power Laser (HAPL) project the Electra Laser, a KrF Gas Laser system is being developed at NRL. The laser uses high voltage (500 - 800 keV), high current (100 - 500 kA), short pulse (100 - 600 ns) electron beams to pump the 0.14 MPa (20 psi) pressurized KrF gas cell, which is separated from the vacuum region by a 25 m-thick stainless steel foil, the Hibachi Foil. The foil is made of SUS304, operates between 180 °C and 450 °C, and has typical dimensions of about 0.3 m × 1.0 m. The laser pulses at up to 5 Hz, and the foil is subjected to repetitive thermal and mechanical stresses. In typical experiments, the foil lasts 1000 - 20,000 shots before suffering a catastrophic failure. In an attempt to improve foil performance a variety of design modifications are being considered along with changes in foil material. Earlier Hibachi foil designs used flat foils resting on 0.3 m long square water-cooled supporting ribs (1 cm wide). There is a 3.4 cm gap between ribs. . Advanced Hibachi foil concepts are under development using a scalloped foil design. In this paper we report on the comparative thermo-mechanical analysis between flat and scalloped foil geometries. It is demonstrated that the scalloped design reduces stresses to within yield limits of the stainless steel material.