ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kurt J. Boehm, A. R. Raffray, N. B. Alexander, D. T. Frey, D. T. Goodin
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 422-426
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8938
Articles are hosted by Taylor and Francis Online.
A fluidized bed is being studied as a very promising method for mass production of IFE targets. Large beds could be filled with many targets to provide large-scale production, while a near-isothermal environment could be maintained in principle around each target (as required for smooth layering to meet the physics requirements on the ice characteristics) through the random movement and spin of individual targets within a precisely controlled gas stream. Concerns exist, however, including the effect of unbalanced spheres on the bed behavior and ultimately on the target thermal environment, as well as the possible damage of the target surface (in particular the thin high-Z coating).This effort includes developing a numerical fluidized bed model and conducting laboratory-scale companion experiments to help understand the cryogenic fluidized bed behavior. Key challenges in developing the model include the relative size of the spherical targets (~4.0 mm) compared to the size of the prototypic fluidized bed container (~26 mm in diameter), which is much larger than those found in conventional fluidized bed models and which calls for a different modeling approach. In addition, the behavior of unbalanced targets, which results from the initial D-T filling and freezing in the target production process, needs to be accounted for.This paper summarizes the development of this model, including the validation performed by comparing the model results to controlled lab-scale experiments. The goal is to use the model for parametric analysis to help determine the most promising state of operation to deliver large quantities of uniformly layered target shells. This will provide key pre-operational input to the prototypical experimental set-up, which is currently being built and which includes a high-pressure deuterium filling station in addition to the cryogenic fluidized bed operating at temperatures around 18 K.