ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kurt J. Boehm, A. R. Raffray, N. B. Alexander, D. T. Frey, D. T. Goodin
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 422-426
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8938
Articles are hosted by Taylor and Francis Online.
A fluidized bed is being studied as a very promising method for mass production of IFE targets. Large beds could be filled with many targets to provide large-scale production, while a near-isothermal environment could be maintained in principle around each target (as required for smooth layering to meet the physics requirements on the ice characteristics) through the random movement and spin of individual targets within a precisely controlled gas stream. Concerns exist, however, including the effect of unbalanced spheres on the bed behavior and ultimately on the target thermal environment, as well as the possible damage of the target surface (in particular the thin high-Z coating).This effort includes developing a numerical fluidized bed model and conducting laboratory-scale companion experiments to help understand the cryogenic fluidized bed behavior. Key challenges in developing the model include the relative size of the spherical targets (~4.0 mm) compared to the size of the prototypic fluidized bed container (~26 mm in diameter), which is much larger than those found in conventional fluidized bed models and which calls for a different modeling approach. In addition, the behavior of unbalanced targets, which results from the initial D-T filling and freezing in the target production process, needs to be accounted for.This paper summarizes the development of this model, including the validation performed by comparing the model results to controlled lab-scale experiments. The goal is to use the model for parametric analysis to help determine the most promising state of operation to deliver large quantities of uniformly layered target shells. This will provide key pre-operational input to the prototypical experimental set-up, which is currently being built and which includes a high-pressure deuterium filling station in addition to the cryogenic fluidized bed operating at temperatures around 18 K.