ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kurt J. Boehm, A. R. Raffray, N. B. Alexander, D. T. Frey, D. T. Goodin
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 422-426
IFE Target Design | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8938
Articles are hosted by Taylor and Francis Online.
A fluidized bed is being studied as a very promising method for mass production of IFE targets. Large beds could be filled with many targets to provide large-scale production, while a near-isothermal environment could be maintained in principle around each target (as required for smooth layering to meet the physics requirements on the ice characteristics) through the random movement and spin of individual targets within a precisely controlled gas stream. Concerns exist, however, including the effect of unbalanced spheres on the bed behavior and ultimately on the target thermal environment, as well as the possible damage of the target surface (in particular the thin high-Z coating).This effort includes developing a numerical fluidized bed model and conducting laboratory-scale companion experiments to help understand the cryogenic fluidized bed behavior. Key challenges in developing the model include the relative size of the spherical targets (~4.0 mm) compared to the size of the prototypic fluidized bed container (~26 mm in diameter), which is much larger than those found in conventional fluidized bed models and which calls for a different modeling approach. In addition, the behavior of unbalanced targets, which results from the initial D-T filling and freezing in the target production process, needs to be accounted for.This paper summarizes the development of this model, including the validation performed by comparing the model results to controlled lab-scale experiments. The goal is to use the model for parametric analysis to help determine the most promising state of operation to deliver large quantities of uniformly layered target shells. This will provide key pre-operational input to the prototypical experimental set-up, which is currently being built and which includes a high-pressure deuterium filling station in addition to the cryogenic fluidized bed operating at temperatures around 18 K.